

Daily Tutorial Sheet-11

Numerical Value Type for JEE Main

126.(3)
$$CH_3 - C - C - OH$$
 will not give reaction with HIO_4

127.(12)
$$CH_3 - CH \stackrel{+}{+} C - CH_3 + HIO_4 \longrightarrow CH_3 - CHO + CH_3COOH$$

OH

OH

 $CH_3 - CH \stackrel{+}{+} CH - CH_2 - CH_3 + HIO_4 \longrightarrow CH_3 - CHO + CH_3 - CH_2-CHO$

$$\begin{array}{c} \text{OH} \quad \text{OH} \\ \text{OH} \\ \text{OH} \\ + \text{HIO}_4 \\ \end{array} \begin{array}{c} \text{CHO} \\ \text{CHO} \\ \end{array} \begin{array}{c} \text{OH} \\ \text{OH} \\ \end{array} \begin{array}{c} \text{OH} \\ + \text{HIO}_4 \\ \end{array} \begin{array}{c} \text{OH} \\ \text{OH} \\ \end{array} \begin{array}{c} \text{OH} \\ \text{OH} \\ \end{array}$$

128.(1) Pinacol – Pinacolone rearrangement is given by vicinal diol

131.(2)
$$CH_3 - C - CH - CH_3 \xrightarrow{Moist} CH_3 - C - CH - CH_3 \xrightarrow{OH OH} OH$$

OH CI

 $CH_2 - OH$
 $CH_2 - OH$
 $CH_2 - OH$
 $CH_3 - C - CH - CH_3 \xrightarrow{OH OH} OH$
 $CH_2 - OH$
 $CH_3 - C - CH - CH_3 \xrightarrow{OH OH} OH$
 $CH_2 - OH$
 $CH_3 - C - CH - CH_3 \xrightarrow{OH OH} OH$
 $CH_2 - OH$
 $CH_3 - C - CH - CH_3 \xrightarrow{OH OH} OH$
 $CH_3 - C - CH - CH_3 \xrightarrow{OH OH} OH$

- **133.(1)** Tertiary alcohol will be more reactive than secondary alcohol for lucas reagent.
- 134.(3) Primary alcohol, Iodide and nitro compound will give red colouration in victor-mayer test.

Can not be distinguished because they both are secondary groups.

O | | 136.(5)
$$CH_3 - C -$$
group having mass = 43.

 \rightarrow One acetyl group is added by removal of 1 hydrogen atom

$$\rightarrow$$
 So, number of hydroxyl group are $\frac{390-180}{42} = 5$.

137.(3)
$$HO \longrightarrow OH \longrightarrow OH \longrightarrow CHO$$
 $HO \longrightarrow CH_2$ RO - CH $\longrightarrow CHO$ + HCHO + 2HCOOH

138.(3)
$$C_3H_8O_3 + CH_3MgI \longrightarrow CH_4$$

 $0.092 \qquad \qquad 67$
 $92 \qquad \qquad 22400$
= 0.001 mole = 0.003 mole

Therefore, 3 active hydrogen atoms are present.

Because of two chiral center in the final molecule, four optically active compounds are present.